# 94. Binary Tree Inorder Traversal

Given a binary tree, return the inorder traversal of its nodes' values.

Example:

Input: [1,null,2,3]
   1
    \
     2
    /
   3

Output: [1,3,2]

# Solution

Approach 1: recursion.

Approach 2: stack based -- push horizontal. We push the middle node (plus the right subtree) to stack because the middle node needs to be visited later.

Approach 3: Morris traversal -- construct a (partly) threaded binary tree, where each leaf node's right pointer points to its inorder successor (and deleting these pseudolinks later). Running time: O(N) -- see Binary Tree Preorder Traversal.

# Code (Python)

Approach 1:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def inorderTraversal(self, root):
        """
        :type root: TreeNode
        :rtype: List[int]
        """
        # recursive
        if not root:
            return []
        return self.inorderTraversal(root.left) + [root.val] + self.inorderTraversal(root.right)

Approach 2:

    def inorderTraversal2(self, root):
        # iterative -- push horizontal
        # we can't start with stack = [root] because the moment you pop that node out it needs to be visited as the middle node.
        result = []
        stack = []
        node = root
        while node:
            stack.append(node)
            node = node.left
        while stack:
            node = stack.pop()
            result.append(node.val)
            node = node.right
            while node:
                stack.append(node)
                node = node.left
        return result

Approach 3:

    def inorderTraversal(self, root):
        # Morris traversal: https://leetcode.com/problems/binary-tree-inorder-traversal/discuss/148939/CPP-Morris-Traversal
        # idea: construct a (partly) threaded binary tree, where each leaf node's right pointer points to its inorder successor
        if not root:
            return []
        result = []
        node = root
        while node:
            if not node.left: # happens either when a node doesn't have a left child, or a leaf node having a pseudolink
                result.append(node.val)
                node = node.right
            else:
                # for this node, search for the rightmost leaf on its left subtree (i.e. it's inorder predecessor)
                prev = node.left
                while prev.right and prev.right != node:
                    prev = prev.right
                if not prev.right:
                    prev.right = node # set the pseudolink
                    node = node.left # dive down
                else:
                    prev.right = None # remove pseudolink
                    result.append(node.val)
                    node = node.right
        return result

# Code (C++)

Approach 1:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
// Recursion.
class Solution {
private:
    vector<int> inorder;
    void doInorderTraversal(TreeNode* root) {
        if (root == NULL)
            return;
        doInorderTraversal(root->left);
        inorder.push_back(root->val);
        doInorderTraversal(root->right);
    }
public:
    vector<int> inorderTraversal(TreeNode* root) {
        doInorderTraversal(root);
        return inorder;
    }
};

Approach 2:

// Iteration.
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> inorder;
        stack<TreeNode*> st;
        TreeNode *node = root;
        while (node)
        {
            st.push(node);
            node = node->left;
        }
        while (!st.empty())
        {
            node = st.top();
            st.pop();
            inorder.push_back(node->val);
            node = node->right;
            while (node)
            {
                st.push(node);
                node = node->left;
            }
        }
        return inorder;
    }
};
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> inorder;
        stack<TreeNode*> st;
        TreeNode *p = root;
        while (p || !st.empty())
        {
            if (p)
            {
                st.push(p);
                p = p->left;
            }
            else
            {
                // Here st will not be empty.
                p = st.top();
                st.pop();
                inorder.push_back(p->val);
                p = p->right;
            }
        }
        return inorder;
    }
};
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> inorder;
        stack<TreeNode*> st;
        if (root)
            st.push(root);
        while (!st.empty())
        {
            TreeNode *curr = st.top();
            if (curr->left)
            {
                TreeNode *left = curr->left;
                st.push(left);
                curr->left = NULL; // avoid infinite loops.
                curr = left;
            }
            else
            {
                inorder.push_back(curr->val);
                st.pop();
                if (curr->right)
                    st.push(curr->right);
            }
        }
        return inorder;
    }
};

Approach 3:

// Morris Traversal.
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> inorder;
        TreeNode *node = root;
        while (node)
        {
            TreeNode *leftRightMost = node->left;
            while (leftRightMost && leftRightMost->right)
            {
                leftRightMost = leftRightMost->right;
            }
            if (leftRightMost)
            {
                leftRightMost->right = node;
                TreeNode *left = node->left;
                node->left = NULL; // to avoid the infinite loop.
                node = left;
            }
            else
            {
                inorder.push_back(node->val);
                node = node->right;
            }
        }
        return inorder;
    }
};
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> inorder;
        TreeNode *curr = root;
        while (curr)
        {
            if (curr->left)
            {
                TreeNode *leftRightMost = curr->left;
                while (leftRightMost->right)
                {
                    leftRightMost = leftRightMost->right;
                }
                leftRightMost->right = curr;
                TreeNode *left = curr->left;
                curr->left = NULL; // to avoid the infinite loop.
                curr = left;
            }
            else{
                inorder.push_back(curr->val);
                curr = curr->right;
            }
        }
        return inorder;
    }
};