# 306. Additive Number
Additive number is a string whose digits can form additive sequence.
A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.
Given a string containing only digits '0'-'9', write a function to determine if it's an additive number.
Note: Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.
Example 1:
Input: "112358"
Output: true
Explanation: The digits can form an additive sequence: 1, 1, 2, 3, 5, 8.
1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8
Example 2:
Input: "199100199"
Output: true
Explanation: The additive sequence is: 1, 99, 100, 199.
1 + 99 = 100, 99 + 100 = 199
Constraints:
- num consists only of digits '0'-'9'.
- 1 <= num.length <= 35 Follow up: How would you handle overflow for very large input integers?
# Solution
Approach 1: O(n^2).
# Code (Python)
Approach 1:
# Code (C++)
Approach 1:
class Solution {
private:
int getNext(string num, int head, long target) {
long tmp = target;
int len = 0;
do
{
len++;
tmp /= 10;
}
while (tmp);
if (head + len - 1 >= num.size())
return -1;
for (int i = len; i > 0; --i)
{
if (num[head + i - 1] - '0' != target % 10)
return -1;
target /= 10;
}
return head + len - 1;
}
public:
bool isAdditiveNumber(string num) {
int n = num.size();
if (n < 3)
return false;
for (int tail1 = 0; tail1 < n; ++tail1)
{
if (tail1 > 0 && num[0] == '0')
continue;
for (int tail2 = tail1+1; tail2 < n; ++tail2)
{
if (tail2 - tail1 > 1 && num[tail1+1] == '0')
continue;
long num1 = stol(num.substr(0, tail1+1));
long num2 = stol(num.substr(tail1+1, tail2-tail1));
int head3 = tail2 + 1;
while (head3 < n)
{
long sum = num1 + num2;
int tail3 = getNext(num, head3, sum);
if (tail3 < 0)
break;
else if (tail3 == n - 1)
return true;
num1 = num2;
num2 = sum;
head3 = tail3 + 1;
}
}
}
return false;
}
};